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Abstract Spectroscopic techniques are very essential tools in studying electronic
structures, spectroscopic constants and energetic properties of diatomic molecules.
These techniques are also required for parametrization of new method based on theo-
retical analysis and computational calculations. In this research, we apply the proper
quantization rule in spectroscopic study of some diatomic molecules by solving the
Schrödinger equation with two solvable quantum molecular potentials; Tietz-Wei and
shifted Deng-Fan potential models for their approximate nonrelativistic energy states
via an appropriate approximation to the centrifugal term. We show that the energy
levels can be determined from its ground state energy. The beauty and simplicity of
the method applied in this study is that, it can be applied to any exactly as well as
approximately solvable models. The validity and accuracy of the method is tested with
previous techniques via numerical computation for H2 and CO diatomic molecules.
Our result also include energy spectrum of five different electronic states of NO and
two different electronic state of ICl.
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1 Introduction

The exact solutions of solvable quantum potential models have received much interest
since they provide us some insight into the physical problem under consideration. Over
the past years, various eigensolution techniques have been proposed to solve quantum
potential models. Few of these methods are: formula method [1], Nikiforov-Uvarov
method [2], the asymptotic iteration method [3,4], the supersymmetric quantum
mechanics [5], the factorization method [6], wave function ansatz method [7], the gen-
eralized pseudospectral method (GPS) [8–12] and the exact quantization rule (EQR)
[13–17]. Notes on these techniques can be found in Ref. [18].

Recently, the EQRhas been proposed to solve thewave equationswith some exactly
or approximately solvable quantum potentials for their energy eigenvalues and wave
functions. Nevertheless, such solutions involve highly complicated integral calcula-
tions, in particular when calculating the quantum correction term. Therefore, in order
to avoid these difficulties, Serrano et al. have proposed a new way to treat these prob-
lems and called it the proper quantization rule (PQR) [19,20]. Furthermore, it has been
shown that PQR is a powerful tool in finding the eigenvalues for all solvable quantum
systems [21,22].

Furthermore, the study of the bound state processes is fundamental to understand-
ing the molecular spectrum of the diatomic molecules and their properties in quantum
mechanics. In light of this, there has been a growing interest in searching for the
empirical potential functions for diatomic molecules in chemical physics and related
areas [23,24]. The reason is that such potentials provide the compact way to summa-
rize what we know about a molecule. Thus, efforts to construct a universal potential
function that fit experimental data in computational chemistry have been made by
many researchers. It has been found that the exponential type molecular potentials are
better than the harmonic oscillator in simulating the atomic interaction for diatomic
molecules.

In this context, to achieve the goal of the present work, we study the spectrum of
some diatomic molecules using two exponential-type of molecular models; namely,
the Tietz-Wei and shifted Deng-Fan potential models [24,25]. The bound state solu-
tion of the Schrödinger equation with these diatomic molecular potentials provides
the rotational-vibrational energy states of the diatomic molecules in an accurate man-
ner. We apply PQR to obtain the energy spectrum of the two molecular potential
models and then obtain the rotational-vibrational energy states for various diatomic
molecules.

This work is organized as follows. In Sect. 2, we briefly introduce the PQR. In
Sect. 3, we apply the method to obtain the energy spectrum of the Schrödinger
equation with Tietz-Wei and shifted Deng-Fan molecular potentials. We give our
numerical results and discussions in Sect. 4. Some concluding remarks are given in
Sect. 5.
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2 A brief review to proper quantization rule

In this section, we give a brief review to this method [13,14,19–21]. The one dimen-
sional Schrödinger equation takes the form:

d2

dx2
ψ(x) + 2μ

h̄2
[E − V (x)]ψ(x) = 0, (1)

and can be re-written as

φ′(x) + φ(x)2 + k(x)2 = 0, with k(x) =
√
2μ

h̄2
[E − V (x)], (2)

where φ(x) = ψ ′(x)/ψ(x) is the logarithmic derivative of the wave function ψ(x).
The prime denotes the derivative with respect to the variable x . μ denotes the reduced
mass of the two interacting particles. k(x) is the momentum and V (x) is a piecewise
continuous real potential function of x . According to Yang [26] “For the Sturm-
Liouville problem, the fundamental trick is the definition of a phase angle which
is monotonic with respect to the energy” [26]. Thus, for the Schrödinger equation, the
phase angle is the logarithmic derivative φ(x). From Eq. (2), as x increases across a
node of wave functionψ(x), φ(x) decreases to−∞, jumps to+∞ and then decreases
again.

In 2005, Ma and Xu [13,14] by carefully studying one-dimensional Schrödinger
equation generalized this exact quantization rule to the 3D radial Schrödinger equation
with spherically symmetric potential by simply making the replacements x → r and
V (x) → Vef f (r):

∫ rb

ra
k(r)dr =Nπ+

∫ rb

ra
φ(r)

[
dk(r)

dr

] [
dφ(r)

dr

]−1

dr,

k(r) =
√
2μ

h̄2
[E − Vef f (r)], (3)

where rA and rB are two turning points determined by E = Vef f (r). The N = n+1 is
the number of the nodes of φ(r) in the region En� = Vef f (r) and is larger by one than
the number n of the nodes of wave functionψ(r). The first term Nπ is the contribution
from the nodes of the logarithmic derivative of wave function, and the second is called
the quantum correction. Ma and Xu [13,14] found that for all well-known exactly
solvable quantum systems, this quantum correction is independent of the number of
nodes of wave function. Accordingly, it is enough to consider the ground state in
calculating the quantum correction Qc = ∫ rB

rA
k′
0(r)

φ0
φ′
0
dr .

The integrals in Eq. (3) and the calculation of quantum correction term are not easy
to obtain for various quantum mechanical problems. This motivated Serrano et al. in
2010 to propose Qiang-Dong proper quantization rule [19,20], so as to simplify the
quantum correction terms. This rule can be summarized as follows:
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∫ rb

ra
k(r)dr =

∫ r0b

r0a
k0(r)dr + nπ with n = N − 1. (4)

In this approach, it is required at first to calculate the integral on the LHS of Eq. (4) and
then replace energy levels En in the result by the ground state energy E0 to obtain the
second integral (RHS). This quantization rule has been used in many physical systems
to obtain the exact solutions of many exactly solvable quantum systems [13,14,19–
21,29,30]

3 Application to some diatomic molecular potentials

In this section, we apply the Qiang-Dong proper quantization to study the rotation
vibrational of some diatomicmolecular potentials. Also, where necessary, we compare
our results with the ones obtained before in the literature.

3.1 Tietz-Wei molecular potential

The Tietz-Wei diatomic molecular potential we examine in this section is defined as
[18,31,32]

V (r) = D

[
1 − e−bh(r−re)

1 − che−bh(r−re)

]2
, (5)

with bh = δ(1−ch), re is the molecular bond length, δ is the Morse constant (denoted
as β in some other research papers), D is the potential well depth and ch is an optimiza-
tion parameter obtained from ab initio or Rydberg-Klein-Rees (RKR) intramolecular
potentials. r is the internuclear distance. When the potential constant approaches zero,
i.e. ch → 0, the TW potential reduces to the Morse potential [33]. The shape of this
potential is shown in Fig. 1 for different molecules. To study any quantum physical
model characterized by the diatomic molecular potential given by Eq. (4), we need to
solve the following Schrödinger equation:

(
P2

2m
+ V (r) − En�

)
ψn,�,m(r, θ, φ) = 0. (6)

In this section, we take the V (r) as the Tietz-Wei potential. Nowwe begin by applying
the method of variable separation so as to split Eq. (6) into radial and angular part.
Thus, by taking the wavefunction ψn,�,m(r, θ, φ) as r−1Rn�(r)Y�m(θ, φ) the radial
part can be found as

d2Rn�(r)

dr2
+ 2μ

h̄2

⎡
⎣En� − D

[
1 − e−bh(r−re)

1 − che−bh(r−re)

]2
− �(� + 1)h̄2

2μr2

⎤
⎦ Rn�(r) = 0,

(7)
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Fig. 1 Shape of the Tietz-Wei diatomic molecular potential for different diatomic molecules: (I)

NO
(
a4	i

)
(II) NO

(
B2	r

)
(III) NO

(
L ′2φ

)
(IV) NO

(
b4
−) (V) NO(X2	r ) (VI) H2

(
X1
+

g

)
(VII)

CO
(
X1
+) (VIII) ICl (X1
+

g

)
(IX) ICl

(
A3	1

)
(X) ICl

(
A′3	2

)

where n, � and En� denote the principal quantum numbers, orbital angular momentum
numbers and the bound state energy eigenvalues of the system under consideration
(i.e., En� < 0 ), respectively. It is generally known that for � = 0, problem (7) is
exactly solvable but for � �= 0, it isn’t. Therefore, in order to solve the above equation
for � �= 0 states, Hamzavi et al. [32] found that the following formula

1

r2
≈ 1

r2e

(
D0 + D1

e−bh(r−re)

1 − che−bh(r−re)
+ D2

e−2bh(r−re)(
1 − che−bh(r−re)

)2
)

, (8)

with

D0 = 1 − 1

α
(1 − ch)(3 + ch) + 3

α2 (1 − ch)
2, lim

ch→0
D0 = 1 − 3

α
+ 3

α2 (9a)

D1 = 2

α
(1 − ch)

2(2 + ch) − 6

α2 (1 − ch)
3, lim

ch→0
D1 = 4

α
− 6

α2 (9b)

D2 = − 1

α
(1 − ch)

3(1 + ch) + 3

α2 (1 − ch)
4, lim

ch→0
D2 = − 1

α
+ 3

α2 , (9c)

is a good approximation scheme to deal with the centrifugal potential term. Constant
α = bhre has been introduced for the sake of simplicity. Now, by inserting this
approximation into Eq. (7) and then introducing a new transformation of the form
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r → � = r−re
re

through themapping function � = f (r)with r in the domain [0,∞ ) or
� in the domain [−1,∞], we obtain the following second order differential equation:

1

r2e

d2Rn�(�)

d�2 + 2μ

h̄2
[
En� − Vef f (�)

]
Rn�(�) = 0, with

Vef f (�) =
⎡
⎣�(� + 1)D0

r2e
+ 2μD

h̄2
+

�(�+1)D1
r2e

+ 4μD
h̄2

(ch − 1)

eα� − ch

+
�(�+1)D2

r2e
+ 2μD

h̄2
(ch − 1)2

(eα� − ch)2

⎤
⎦ h̄2

2μ
. (10)

The two turning points are obtained by solving Vef f (�)−En� = 0 or Vef f (ρ)−En� =
0 with ρ = (eα� − ch)

−1. Thus, it is easy to show that the turning points ρa and ρb
are

ρa = −
�(�+1)D1

r2e
+ 4μD

h̄2
(ch − 1) +

√[
�(�+1)D1

r2e
+ 4μD

h̄2
(ch − 1)

]2 − 4Tn�

[
�(�+1)D2

r2e
+ 2μD

h̄2
(ch − 1)2

]
2Tn�

(11a)

ρb = −
�(�+1)D1

r2e
+ 4μD

h̄2
(ch − 1) −

√[
�(�+1)D1

r2e
+ 4μD

h̄2
(ch − 1)

]2 − 4Tn�

[
�(�+1)D2

r2e
+ 2μD

h̄2
(ch − 1)2

]
2Tn�

(11b)

with the following sum and product properties:

ρa + ρb = −�(� + 1)D1h̄2 + 4μr2e D(ch − 1)

Tn�r2e h̄
2 and ρaρb

= �(� + 1)D2h̄2 + 2μr2e D(ch − 1)2

Tn�r2e h̄
2 . (12)

Furthermore, the momentum k(ρ) between two turning points can be found as:

k(ρ) =
√[

�(� + 1)D2

r2e
+ 2μD

h̄2
(ch − 1)2

]
[(ρb − ρ)(ρ − ρa)]. (13)

The Riccati relation given by Eq. (2) can be re-written for the ground state as

− αρ(1 + chρ)

re
φ′
0(ρ) + φ0(ρ)2 = −2μ

h̄2
[
E0� − Vef f (ρ)

]
. (14)

Since the logarithmic derivative φ0(ρ) for the ground state has one zero and no
pole, it has to take the linear form in ρ. The only possible solution satisfying Eq. (14)

123



J Math Chem (2015) 53:1325–1350 1331

is of the form φ0(ρ) = A+Bρ. The substitution of this expression into Eq. (14), one
has the ground state energy eigenvalue

E0� =
[
�(� + 1)D0

r2e
− A2

]
h̄2

2μ
+ D with

A = 1

2B
[
�(� + 1)

r2e
D1 + 4μD

h̄2
(ch − 1)

]
+ α

2re

and B = chα

2re
− chα

2re

√
1 + 4r2e

α2c2h

[
�(� + 1)D2

r2e
+ 2μD

h̄2
(ch − 1)2

]
(15)

We have now reached a position of calculating the integrals given by Eq. (4). The LHS
integral can be calculated as follows:

∫ rB

rA
k(r)dr = re

∫ �b

�a

k(�)d� = −re
α

∫ ρa

ρb

k(ρ)

ρ(1 + chρ)
dρ

= −re
α

√
�(� + 1)D2

r2e
+ 2μD

h̄2
(ch − 1)2

∫ ρb

ρa

√
(ρb − ρ)(ρ − ρa)

ρ(1 + chρ)
dρ

= −πre
α

√
�(� + 1)D2

r2e
+ 2μD

h̄2
(ch − 1)2

[√
(1 + chρa)(1 + chρb)

ch

− 1

ch
− √

ρaρb

]

= −πre
α

[√
Tn� − 1

ch

[
�(� + 1)D1

r2e
+ 4μD

h̄2
(ch − 1)

]
+ RT

c2h

−
√
RT

ch
−√

Tn�

]

with Tn� =
[
�(� + 1)D0

r2e
+ 2μ

h̄2
(D − En�)

]
and RT

= �(� + 1)D2h̄2

2μr2e
+ D(ch − 1)2, (16)

where we have utilized the properties (12) and the integral relation given by

∫ xb

xa

√
(xb − x)(x − xa)

x(1 + Qx)
dx = π

[√
(Qxa + 1)(Qxb + 1)

Q
− 1

Q
− √

xaxb

]
. (17)

Now, simply by replacing En� in the above Eq. (16) by E0� given by Eq. (15), and Tn�

as T0� =
[

�(�+1)D0
r2e

+ 2μ
h̄2

(D − E0�)
]
, we obtain the integral in the RHS of Eq. (4) as
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∫ r0b

r0a
k0(r)dr = −πre

α

[√
T0� − 1

ch

[
�(� + 1)D1

r2e
+ 4μD

h̄2
(ch − 1)

]
+ RT

c2h

−
√
RT

ch
−√

T0�

]

= πre
αch

[√
RT + B

]
. (18)

With Eqs. (16), (18) and (4), we can deduce the following relation

−πre
α

[√
Tn�− 1

ch

[
�(�+1)D1

r2e
+ 4μD

h̄2
(ch − 1)

]
+ RT

c2h
−√Tn�

]
− πre

αch
B = nπ.

×
√
Tn� − 1

ch

[
�(� + 1)D1

r2e
+ 4μD

h̄2
(ch − 1)

]
+ RT

c2h

= −
(
n + re

αch
B
)

α

re
+√

Tn� (19)

On squaring up both sides of Eq. (19), it is straightforward to show that the energy
eigenvalues equation can be found as

En� = h̄2�(� + 1)D0

2μr2e
+ D − α2h̄2

2μr2e

×

⎡
⎢⎢⎣

η2 + �(�+1)
α2c2h

(D1ch − D2) + 2μDr2e
α2h̄2

(
1 − 1

c2h

)
2η

⎤
⎥⎥⎦
2

with η = n + 1

2
+ 1

2

√
1 + 4

c2h

(
D2�(� + 1)

α2 + 2μDr2e
α2h̄2

(1 − ch)2
)

. (20)

3.2 Shifted Deng-Fan molecular potential

The shifted Deng-Fan molecular potential model we examine in this section is defined
as [25,35]

V (r) = D

(
1 − b

eβr − 1

)2

− D̄, b = eare − 1, (21)

where (D, D̄), b and β are three parameters representing the dissociation energy, the
position of the minimum re and the range of the potential respectively. Very recently,
Wang and co-workers found that theManning-Rosen, Deng-Fan and Schiöberg poten-
tial are not better than the traditional Morse potential in simulating the atomic
interaction for diatomic molecules [36]. In order to overcome this problem, Hamzavi

123



J Math Chem (2015) 53:1325–1350 1333

Table 1 Model parameters of the diatomic molecules studied in the present work

Molecules (states) ch μ/10−23(g) bh(Å−1) re(Å) D(cm−1) β(Å−1) Refs

NO
(
a4	i

)
0.0082003 1.249 2.408413 1.451 16361 2.428326 [37]

NO
(
B2	r

)
−0.482743 1.249 3.42650 1.428 22722 2.310923 [37]

NO
(
L ′2φ

)
−0.073021 1.249 2.73796 1.451 14501 2.551645 [37]

NO
(
b4
−) −0.085078 1.249 3.01538 1.318 21183 2.778957 [37]

NO
(
X2	r

)
0.013727 1.249 2.71559 1.151 53341 2.7534 [37]

H2

(
X1
+

g

)
0.170066 0.0837 1.61890 0.7416 38268 1.9426 [35]

CO
(
X1
+) 0.149936 1.1392 2.20481 1.1283 9.0540 2.2994 [35]

ICl
(
X1
+

g

)
−0.086212 4.55237 2.008578 2.3209 17557 1.849159 [37]

ICl
(
A3	1

)
−0.167208 4.55237 2.542557 2.6850 3814.7 2.178324 [37]

ICl
(
A′3	2

)
−0.157361 4.55237 2.373450 2.6650 4875 2.050745 [37]

et al. suggested a modification to the Deng-Fan potential, which they referred to as
the shifted Deng-Fan potential (sDF) [25]. This modification is simply a Deng-Fan
potential [27,28] shifted by dissociation energy D [25]. The researchers [25] exam-
ined the Schrödinger equation with this potential and applied their results to some
diatomic molecules [25]. From their plot for the shifted Deng-Fan potential and the
Morse potential using the parameters set for H2 diatomic molecule, it was shown that
the two potentials are very close to each other for large values of r in the regions
r ≈ re and r > re, but they are very different at r ≈ 0. Also, if both the Deng-Fan
and the shifted Deng-Fan potentials are deep (that is, D >> 1) they could be well
approximated by a harmonic oscillator in the region r ≈ re [25].

In Fig. (7), we study the variation of this potential with respect to some diatomic
molecules of interest given in Table 1.Now inserting this potential into the Schrödinger
equation, and then use the approximation of the form [35]:

1

r2
=
[
d0 + e−βr(

1 − e−βr
)2
]

, (22)

the effective potential takes the following form:

Vef f (y) = P + Qy + Ry2 with P = D − D̄ + �(� + 1)β2d0h̄2

2μ

Q = �(� + 1)β2h̄2

2μ
− 2Db and R = �(� + 1)β2d0h̄2

2μ
+ Db2, (23)
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after an appropriate coordinate transformation of the form y = (
eβr − 1

)−1
has been

introduced. Now, we can write the non-linear Riccati equation for the ground state as

− ay(1 + y)φ′
0(y) + φ2

0(y) = −2μ

h̄2
[
E0� − Vef f (y)

]
(24)

Since the logarithmic derivative φ0(y) for the ground state has one zero and no pole, it
has to take the linear form in y. Thus, we assume the following solution for the ground
state

φ0(y) = A + By. (25)

By putting Eq. (25) into (35) and solving the non-linear Riccati equation, it is straight-
forward to obtain the ground state energy and values of A and B as

E0� = P − h̄2A2

2μ
with A = μ

h̄2
Q − R

B
+ B

2
and B = β

2
+ 1

2

√
β2 + 8μR

h̄2
.

(26)

Furthermore, in a similar fashion to the previous problem, the two turning points as
well as their sum and product properties are given by

ya = − Q

2R
− 1

2R

√
Q2 − 4R(P − En�), and

yb = − Q

2R
+ 1

2R

√
Q2 − 4R(P − En�)

ya + yb = −Q

R
, ya yb = P − En�

R
and

k(y) =
√
2μR

h̄2
[− (y − ya) (y − yb)]

1/2 . (27)

Now, we have all necessary tools required to perform our calculations. Therefore, we
proceed to calculate integral (4)

∫ rb

ra
k(r)dr = −

∫ yb

ya

k(y)

βy(1 + y)
dy = −

∫ yb

ya

√
2μR

β2h̄2
[(y − ya) (yb − y)]1/2

y(1 + y)
dy

= −π

β

√
2μR

h̄2

[√
(1 + ya)(1 + yb) − 1 − √

ya yb
]

= −π

β

√
2μR

h̄2

[√
R − Q + P − En�

R
− 1 −

√
P − En�

R

]
, (28)
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where we have used the following standard integral

∫ yb

ya

[− (y − ya) (y − yb)]1/2

y(1 + y)
= π

[√
(ya + 1)(yb + 1) − 1 − √

ya yb
]
. (29)

Furthermore, we can find

∫ r0b

r0a
k0(r)dr = −

∫ y0b

y0a

k(y)

βy(1 + y)
dy = −

∫ y0b

y0a

√
2μR

a2h̄2
[− (y − ya) (y − yb)]1/2

y(1 + y)

= −π

β

√
2μR

h̄2

[√
(1 + ya)(1 + yb) − 1 − √

ya yb
]

= −π

β

√
2μR

h̄2

[√
R − Q + P − E0�

R
− 1 −

√
P − E0�

R

]
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Fig. 2 a The variation of the ground state energy spectrum for various values of � as a function of the
potential constant ch . We choose μ = 1, bh = 5, re = 0.8 and D = 15. b The variation of the first excited
energy state for various � as a function of the potential constant ch
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= −π

β

√
2μR

h̄2

[
h̄2

2μR
(A − B) −

√
P − E0�

R
− 1

]

= π

β

√
2μR

h̄2

⎡
⎣B

√
h̄2

2μR
+ 1

⎤
⎦ . (30)

From Eqs. (4), (29) and (31), we can find the energy spectrum for the sDF as

En� =D(b+1)2+ �(�+1)β2h̄2d0
2μ

− h̄2β2

2μ

⎡
⎣
(
B
β

+n
)

2
+ 2μDb(b + 2)

2h̄2β2
(
B
β

+ n
)
⎤
⎦− D̄.

(31)

4 Calculation of the eigenfunctions

The eigenfunction-eigenvalue relation is very important in quantum mechanics
because of its prominence in the equations which relate the mathematical
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Fig. 4 a The variation of the ground state energy state for various values of � as a function of the parameter
bh . We choose ch = 0.03, μ = 1, re = 0.8 and D = 15. b The variation of the first excited energy state
for various � as a function of the parameter bh

formalism of the theory with physical results. eigenfunctions could be considered
as trial functions in variational-type procedures for deriving energy levels anl also for
computing line intensities. Since proper quantization rule cannot be used to obtain
these eigenfunctions, we therefore resort to using the recently proposed formula
method [1]. This method is very easy to use in obtaining not only the eigenfunc-
tions but also energy eigenvalues. In the approach, it is required to transform the
Schrödinger equation with two solvable quantum molecular systems-Tietz-Wei and
shifted Deng-Fan potential models into the form given by Eq. (1) of Ref. [1] via an
apprropriate coordinate transformation of the form τ = eβ� (for TH) and t = e−αr

(for sDF), which maintained the finiteness of the transformed wave functions on the
boundary conditions to have

d2Rn�(τ )

dτ 2
+ 1

τ

dRn�(τ )

dτ
+ 1

τ 2(1 − chτ)2

{[
2μr2e
h̄2α2

(En� − D) − �(� + 1)

α2 D0

]

+
[
−2ch

(
2μr2e En�

α2h̄2
− �(� + 1)

α2 D0

)
+ 4μr2e D

h̄2α2
− �(� + 1)

α2 D1

]
τ
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+
[
c2h

(
2μr2e En�

α2h̄2
− �(� + 1)

α2 D0

)
+ �(� + 1)

α2 (D1ch − D2)

−2μr2e D

h̄2α2

]
τ 2
}
Rn�(τ ) = 0, (32a)

d2Rn�(t)

dt2
+ 1

t

d Rn�(t)

dt
+ 1

t2(1 − t)2

[
2μ

h̄2
(En� − D) − 2μDb

β2h̄2
(b + 2)

−�(� + 1)d0 +t

(
4μbD

β2h̄2
− 4μ

β2h̄2
(En� − D) − �(� + 1)(1 − 2d0)

)

+t2
(

2μ

β2h̄2
(En� − D) − �(� + 1)d0

)]
Rn�(t) = 0. (32b)

Considering Eq. (32a) with reference to [1], k1, k2, k3, AT−H , BT−H and CT−H can
be found. Then, parameters k4 and k5 can be obtained as
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k4 =
√[

2μr2e
h̄2α2

(D − En�) + �(� + 1)

α2 D0

]
and k5

= 1

2

{
1 +

√
1 + 4

c2h

[
�(� + 1)

α2 D2 + 2μr2e D

h̄2α2
(1 − ch)2

]}
, (33)

Hence, the eigenfunctions for TW can be found as

Rn�(�) = Nn�e
−k4α�(1 − che

−α�)k5 2F1
(−n, n + 2(k4 + k5); 2k4 + 1, che

−α�
)
.

(34)

Similarly, the eigenfunctions for sDF can be found as

Rn�(z) = Nn�t
w(1 − t)v 2F1(−n, 2 (w + v) ; 2w + 1; t), (35)
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(
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(IV) NO

(
b4
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(
X1
+

g

)
(VII)

CO
(
X1
+) (VIII) ICl (X1
+

g

)
(IX) ICl

(
A3	1

)
(X) ICl

(
A′3	2

)

where Nn� is the normalization factor and

w =
√

−
(
2μ

h̄2
(En� − D) − 2μDb

β2h̄2
(b + 2) + �(� + 1)d0

)
and v

= 1

2
+
√(

� + 1

2

)
+ 2μDb2

β2h̄2
. (36)

5 Numerical results and discussion

In Fig. 1, we plot the Tietz-Wei (TW) potential for different diatomic molecules. In
what follows, to see the behavior of the ground n = 0 and first excited n = 1 states,
we plotted the energy for these states with potential parameters for three different
orbital states � = 0, 1, 2. In Fig. 2, we show the variation of En,� with the potential
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Table 3 Bound-state energy eigenvalues for NO
(
a4	i

)
, NO

(
B2	r

)
, NO

(
L ′2φ

)
, NO

(
b4
−) and

NO (X2	r ) molecules for various n and rotational � quantum numbers in Tietz-Wei diatomic molecular
potential

n � NO
(
a4	i

)
NO

(
B2	r

)
NO

(
L ′2φ

)
NO

(
b4
−) NO (X2	r )

0 0 0.05724382 −0.06511639 −0.05748847 −0.07561426 −0.04775936

1 0 0.16924769 −0.19664818 −0.17491875 −0.22970681 −0.14364066

1 0.16950472 −0.19637388 −0.17464813 −0.22937970 −0.14352509

2 0 0.27795077 −0.33036890 −0.29569047 −0.38771825 −0.24006757

1 0.27820318 −0.33009351 −0.29541545 −0.38738640 −0.23995169

2 0.27870799 −0.32954274 −0.29486542 −0.38672273 −0.23971993

3 0 0.38335537 −0.46625489 −0.41978250 −0.54962300 −0.33703799

1 0.38360316 −0.46597847 −0.41950311 −0.54928644 −0.33692180

2 0.38409872 −0.46542563 −0.41894434 −0.54861334 −0.33668942

3 0.38484202 −0.46459641 −0.41810624 −0.54760374 −0.33634086

4 0 0.48546381 −0.60428372 −0.54717398 −0.71539576 −0.43454981

1 0.48570698 −0.60400632 −0.54689024 −0.71505453 −0.43443332

2 0.48619332 −0.60345153 −0.54632279 −0.71437207 −0.43420033

3 0.48692277 −0.60261938 −0.54547165 −0.71334844 −0.43385085

4 0.48789530 −0.60150990 −0.54433688 −0.71198366 −0.43338490

Table 4 Bound-state energy eigenvalues for H2

(
X1
+

g

)
, ICl

(
X1
+

g

)
, ICl

(
A3	1

)
, ICl

(
A′3	2

)
and

ICl
(
B′O+) molecules for various n and rotational � quantum numbers in Tietz-Wei diatomic molecular

potential

n � H2

(
X1
+

g

)
CO

(
X1
+) ICl

(
X1
+

g

)
ICl

(
A3	1

)
ICl

(
A′3	2

)

0 0 0.26925518 0.15070333 −0.02388751 −0.01317364 −0.01400330

1 0 0.77877437 0.44839050 −0.07201091 −0.03995431 −0.04239940

1 0.79255794 0.44885861 −0.07198238 −0.03993286 −0.04237766

2 0 1.25241802 0.74134891 −0.12061278 −0.06734751 −0.07134441

1 1.26542046 0.74181176 −0.12058411 −0.06732587 −0.07132249

2 1.29131118 0.74273745 −0.12052676 −0.06728259 −0.07127867

3 0 1.69133322 1.02961057 −0.16969191 −0.09534658 −0.10083355

1 1.70358901 1.03006820 −0.16966309 −0.09532475 −0.10081146

2 1.72799429 1.03098343 −0.16960544 −0.09528108 −0.10076729

3 1.76433953 1.03235625 −0.16951898 −0.09521559 −0.10070103

4 0 2.09661354 1.31320715 −0.21924707 −0.12394503 −0.13086213

1 2.10815488 1.31365958 −0.21921810 −0.12392301 −0.13083988

2 2.13113862 1.31456443 −0.21916017 −0.12387897 −0.13079536

3 2.16536983 1.31592167 −0.21907327 −0.12381290 −0.13072858

4 2.21056327 1.31773125 −0.21895740 −0.12372482 −0.13063955
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Fig. 8 a The variation of the ground state energy state for various values of � as a function of the potential
range β. We choose μ = 1, re = 0.8 and D = 15. b The variation of the first excited energy state for
various � as a function of the potential range β

constant ch . It shows that for ch < 0, the energy is negative whereas when ch > 0,
the energy is positive for n = 0. On the other hand, for n = 1, the energy becomes
strongly bound for ch < 0 and moves toward the negative energy for ch > 0. The
ch = 0 represents the Morse energy. The best choice ch = 0.03 restores the results of
Morse potential. At this value the energy curves coincide and have same behavior for
� = 0, 1, 2. Figure 3 shows the variation of En,� with the reduced mass μ for three
orbital states. The energy is very similar for 0.1 < μ < 1.0 when n = 1 but different
when n = 0. It is seen that when μ increases for more than 0.3, the energy spectrum
becoming positive for ground state while for excited state, it is positive for any value
of μ

In Fig. 4,weplot the variation of En,� with the potential parameterbh . It is increasing
in the positive direction within the interval 0 < bh < 8 when n = 0. However, when
n = 1, the energy increases in positive side for 0 < bh < 4 and increases in the
negative side for 4 < bh < 8. In Fig. 5 we show the variation of the energy states En,�

as a function of molecular bond length re. The ground state energy drops with nearly
2eV for all orbital states at re = 0.8 f m and re = 0.9 f m whereas the first excited
state has drop of about 0.45eV and coincide at 0.56 fm. Finally, Fig. 6 demonstrates
the energy versus the well depth D. It is seen that the ground state energy span from
negative to positive spectrum at D = 2 eV . for orbital states � = 0, 1, 2. However the
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Fig. 9 a The variation of the ground state energy state for various values of � as a function of the particle
mass μ. We choose β = 5, re = 0.8 and D = 15. b The variation of the first excited energy state for
various � as a function of the particle mass μ

first excited energy state span from negative to positive spectrum at D = 8 eV for all
orbital states.

A very similar behavior to TW potential model (sDF shape) for various mole-
cules is shown in Fig. 7. In addition we have obtained the energy spectrum for
different diatomic molecules with the help of TW molecular model for various
states using the model potential parameters in Table 1. This spectroscopic para-
meter are taken from Refs. [35,37] and [39] and the conversion factors used are
taken from NIST database [40]: 1 cm−1 = 1.239841930eV, h̄c = 1973.29 eVÅ and
1amu = 931.494061Mev/c2. In Table 2, we test the accuracy of the method utilized
in this study by finding the energy spectra of H2 and CO diatomic molecules. We
found that the spectrum obtained by NU method in [32] have some error in the Maple
codes. We therefore re-compute these spectrum in the present work for the sake of
comparison. As it can be seen from the table, our results are very close to the ones of

the Nikiforov-Uvarov method. Tables 3 and 4 present the spectrum for H2

(
X1
+

g

)
,

CO
(
X1
+) and various electronic states of NO and ICl diatomic molecules.
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Fig. 10 a The variation of the ground state energy state for various values of � as a function of themolecular
bond length re . We choose μ = 1, β = 5 and D = 15. b The variation of the first excited energy state for
various � as a function of the molecular bond length re

Considering sDFmolecular potential, Fig. 8 shows the variation of En,� as a function
of β, in the ground state. The restriction on our choice of the parameter β of sDF
molecular potential can be observed. The energy for � = 1, 2 increases in the positive
side but � = 0 the energy increases in the negative side. On the other hand, in the first
excited state, the energy increases in the negative side in the interval 0 < β < 15 for
� = 0, 1, 2.

Figure 9 shows the variation of En,� as a function of reduced mass μ. Small values
of particle mass μ result into a sharp change in energy values for ground and first
excited states for the orbital states. The energy becomes stable when μ > 1. This
plot indicates how to choose or read the most reasonable values of μ which provides
the most appropriate and not overlapping spectrum amongst orbital states. Figure 10
is a plot of energy versus bond length re. The spectrum E0,2 > E0,1 > E0,0 when
re > 0.2 and E1,2 > E1,1 > E1,0 when re > 0.4. Figure 10 set restrictions on the
most suitable values of re. At re < 0.6− 0.8 f m, the energy of different orbital states
overlap and deteriorate sharply.

The variation of the energy versus parameter D is shown in Fig. 11. For n = 0
the energy increases and then decreases in the given range 0 < D < 25 whereas for
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Fig. 11 a The variation of the ground state energy state for various values of � as a function of the
dissociation energy De . We choose μ = 1, β = 5 and re = 0.8. b The variation of the first excited energy
state for various � as a function of the dissociation energy D

n = 1, it is increasing in the same interval. Furthermore we generated the spectrum
of several diatomic molecules using the sDF molecular potential for various states.
The behavior of the plot energy against each potential parameter for various states
provides us the most appropriate physical values for each parameter. Figures 6 and 10
have different behaviors since they are a plots of energy against re for two potentials.
However, if one has set to choose large values for re (say re > 0.6) then the two curves
will be similar.

Table 5 compares our results for H2 and CO with those of the GPS method,
Nikiforov-Uvarov and AIM methods. Our currently found energy states are reason-
ably compared with the other findings. The vibrational energy is close to 7 digits with
AIM [35] but found to agree with GPS [34] up to 4 digits. However, the rotational-
vibrational energy states are close close to 5 digits with AIM. This is due to the
approximation made to the centrifugal restorsion term. Also, it should be noted
that the model is a parameter dependent which may result into slight variation in
energy spectrum if parameters are not converted/adjusted properly. Table 6 displays
the energy spectrum for different species of NO diatomicmolecules. However, Table 7
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Table 6 Bound-state energy eigenvalues for NO
(
a4	i

)
, NO

(
B2	r

)
, NO

(
L ′2φ

)
, NO

(
b4
−) and

NO (X2	r )molecules for various n and rotational � quantum numbers in sDF diatomicmolecular potential

n � NO
(
a4	i

)
NO

(
B2	r

)
NO

(
L ′2φ

)
NO

(
b4
−) NO (X2	r )

0 0 −1.96954814 −2.75045354 −1.73990613 −2.54988834 −6.49084320

1 0 −1.85431702 −2.61950265 −1.62684906 −2.40042016 −6.24919850

1 −1.85394591 −2.61914169 −1.62645839 −2.39995170 −6.24866000

2 0 −1.74265661 −2.49186027 −1.51767759 −2.25557591 −6.01232867

1 −1.74228862 −2.49150219 −1.51729002 −2.25511093 −6.01179390

2 −1.74155263 −2.49078605 −1.51651490 −2.25418099 −6.01072438

3 0 −1.63455757 −2.36751730 −1.41238208 −2.11534494 −5.78022207

1 −1.63419268 −2.36716213 −1.41199768 −2.11488343 −5.77969103

2 −1.63346278 −2.36645179 −1.41122876 −2.11396043 −5.77862896

3 −1.63236803 −2.36538629 −1.41007542 −2.11257593 −5.77703588

4 0 −1.53001045 −2.24646485 −1.31095323 −1.97971663 −5.55286713

1 −1.52964860 −2.24611256 −1.31057185 −1.97925858 −5.55233981

2 −1.52892485 −2.24540801 −1.30980918 −1.97834250 −5.55128517

3 −1.52783925 −2.24435119 −1.30866514 −1.97696839 −5.54970324

4 −1.52639185 −2.24294214 −1.30713977 −1.97513628 −5.54759404

Table 7 Bound-state energy eigenvalues for H2

(
X1
+

g

)
, ICl

(
X1
+

g

)
, ICl

(
A3	1

)
, ICl

(
A′3	2

)
and

ICl
(
B′O+)molecules for various n and rotational � quantum numbers in sDF diatomic molecular potential

n � H2

(
X1
+

g

)
CO

(
X1
+) ICl

(
X1
+

g

)
ICl

(
A3	1

)
ICl

(
A′3	2

)

0 0 −4.40110165 −11.08006149 −2.152719356 −0.459938084 −0.59052741

1 0 −3.75459356 −10.79430704 −2.104958026 −0.434430900 −0.56321617

1 −3.74109390 −10.79376640 −2.104907368 −0.434368596 −0.56316009

2 0 −3.17123615 −10.51257523 −2.057739707 −0.409653282 −0.53655412

1 −3.15882350 −10.51203847 −2.057689131 −0.409591035 −0.53649810

2 −3.13406357 −10.51096496 −2.057587980 −0.409466541 −0.53638607

3 0 −2.64736026 −10.23485368 −2.011064148 −0.385605052 −0.51054106

1 −2.63597228 −10.23432079 −2.011013655 −0.385542864 −0.51048511

2 −2.61325755 −10.23325500 −2.010912669 −0.385418487 −0.51037321

3 −2.57933793 −10.23165635 −2.010761189 −0.385231921 −0.51020535

4 0 −2.17959586 −9.96113006 −1.964931100 −0.362286035 −0.48517681

1 −2.16917525 −9.96060101 −1.964880689 −0.362223905 −0.48512092

2 −2.14839142 −9.95954293 −1.964779867 −0.362099645 −0.48500914

3 −2.11735861 −9.95795584 −1.964628634 −0.361913255 −0.48484148

4 −2.07624689 −9.95583977 −1.964426991 −0.361664734 −0.48461792
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present ones for H2

(
X1
+

g

)
, CO

(
X1
+), various electronic states of ICl diatomic

molecules.

6 Concluding remarks

In this work, we applied proper quantization rule in a spectroscopic study of some
diatomic molecules. This task is made possible by solving the Schrödinger equation
with two molecular models; namely, Tietz-Wei and shifted Deng-Fan potential mod-
els. This solution serves as the basis for the description of the quantum aspects of
diatomic molecules. We obtained the energy spectra of different diatomic molecules.
The validity and accuracy of the method is tested with previous techniques via numer-
ical computation for H2 and COmolecules. Our reasonable results show the efficiency
and simplicity of the present calculations. The approximation to the centrifugal restor-
sion is valid for the lowest orbital quantum number �. As � increases, the accuracy
of the energy states reduces and vice-versa. The present research work represents a
new procedure in dealing with the diatomic molecules. Our results are reasonable and
credible in generating the spectrum as the other commonly known methods.
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